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Abstract 

More resistant to noise and able to retrieve information on higher dimensional aspects than what is initially seen in the data, topological 

invariants (shapes) of data may be studied within the overall framework of TDA. My presentation will focus on current and future efforts in 

order to apply persistent homology to the problem of intracellular network categorization. Data may be partitioned into hierarchical clusters 

using techniques from TDA, including persistent homology. In order to propose an updated version of the CNN and evaluate its performance 

in comparison to the original CNN, I investigate both theoretical and practical insights from topological clustering of graphs and pictures. 

 

Keywords: TDA, neural network, architectures and machine learning models 

  

Introduction 

According to what was noted in one reason to build 

Convolutional Neural Networks (CNNs) was so that they 

might be scarified according to the geometry of the feature 

space. The two-dimensional array of characteristics, namely 

pixels, was the geometry used in convolutional neural 

networks for pictures. M. Robinson has also used the phrase 

topological signal processing to characterize the 

significance of topologies or geometries on feature spaces. 

We examine in this work a set of picture filters that is 

intimately associated with a Gabor filter subfamily whose 

shape is that of a famous geometrical object, the Klein 

bottle1. Not only may these filters enhance the data's feature 

set, but they can also be utilized to build convolutional 

neural network (CNN) analogues that perform better on 

several performance metrics. Additional scarification is 

achieved by adding layers that are derived from a graph-

based discretization of the Klein bottle. 

Through the application of extra structure on convolutional 

layers, we are able to apply the geometry of the Klein bottle 

and its related image filters. Neural networks that include 

these layers are referred to as Topological Convolutional 

Neural Networks (TCNNs). Image and video data are used 

in our investigations. According to the findings, TCNNs 

outperform traditional CNNs on a number of criteria. 

When it comes to picture classification, deep neural network 

(NN) architectures are often considered the gold standard 

because to their exceptional accuracy and precision in 

differentiating between several classes. The most popular 

neural network design for picture categorization includes 

CNNs; for examples. A CNN's defining feature is the use of 

convolutional layers, which utilize weight sharing across 

slices and take advantage of the image's 2-dimensional 

topology to sparsity a fully connected network. The building 

blocks of convolutional neural networks (CNNs) are a 

network of linked layers to build more sophisticated global 

characteristics, such as object position and categorization, 

from more basic spatially local data, such as textures, lines, 

and edges. Video classification is another usage of CNNs; 

for examples. Convolutional neural networks (CNNs) have 

a number of significant limitations, such as models that are 

hard to understand, huge dataset requirements, and poor 

data generalization. Evidence suggests that CNNs' 

usefulness does not scale linearly with their size and 

complexity. This indicates that larger and more complex 

models will not be sufficient to sustainably improve picture 

categorization. 

 

Literature Review 

Topological deep learning computational challenge hosted 
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by the ICML 2023 Workshop on Topology and Geometry in 

Machine Learning is presented in this article. In order to 

participate in the competition, participants were invited to 

contribute to the TopoNetX (data processing) and 

TopoModelX (deep learning) python packages, which are 

topological neural network implementations grounded on 

literature. During the two months that the challenge was 

open, twenty-eight contributions were deemed qualified. 

A wide variety of data analysis and machine learning 

applications make extensive use of discrete mathematical 

structures known as posets. Posets and data science have 

been the subject of continuous research for quite some time. 

This article provides a thorough literature overview of 

posets used in data analysis and machine learning, including 

the theory, algorithms, and practical implementations of 

these methods. There will also be an emphasis on the 

machine learning applications of applied lattice theory 

inside formal concept analysis. 

Investigated the use of TDA for analyzing the architecture 

of neural networks. They used topological methods to study 

the loss landscapes of neural networks, revealing critical 

points and identifying structural patterns that influenced 

training efficiency. Their findings were pivotal in 

understanding the behavior of neural networks, providing 

insights into model optimization and generalization. 

 

Rieck et al. (2019) [1]: Suggested a framework for detecting 

anomalies in high-dimensional data that is based on TDA. 

By leveraging persistence diagrams to identify deviations in 

the topological structure, the study demonstrated the 

effectiveness of TDA in detecting rare events. Applications 

in cybersecurity and financial fraud detection were 

highlighted, showing how TDA could outperform traditional 

statistical methods in identifying outliers. 

 

Carrière et al. (2017): introduced kernel methods to 

improve persistent homology in machine learning's 

usability. They developed persistence kernels that allowed 

the seamless integration of TDA with assist vector machines 

and more kernel-based techniques. This approach facilitated 

applications in supervised learning tasks, including 

classification and regression, and proved particularly 

effective in biological data analysis. 

 

Topological Convolutional Layers 

For the purpose of 2D image categorization, we provide 

novel layers of neural networks that make up our TCNNs. 

For the purpose of video categorization, we provide new 

layers for TCNNs. shows how our structures are related to 

Gabor filters. 

 

2D Images 

In a typical convolutional neural network, (Cd,2) the 

correlation between cells in a two-dimensional image 

defines the L∐− spatial separation, which in turn determines 

locality, go to Definition. To this concept of locality, we 

provide new topological requirements in the form of metrics 

on topological manifolds. The following comment explains 

the overall method. 

 

Remark: Every one of the layers specified in Definitions 

may be described by the following generic edge-defining 

correspondence C. 

Let M be a manifold and let X, Xr ⊂ M constitute two 

discretizations of M, denoting limited collections of points. 

Let Vi = X ×ZN and Vi+1 = Xr ×ZN be successive layers in a 

FFNN. Fix a threshold s ≥ 0. Let d be a metric on M. Define 

a correspondence C(s) ⊂ X × Xr by 

 

C(s)—1(κr) = {κ ∈ X | d(κ, κr) ≤ s} 

 

for all κr ∈ Xr. Together with another threshold sr ≥ 0, this 

defines a correspondence C ⊂ Vi × Vi+1 by 

 

C = C(s) × Cd,N (sr), 

where Cd,N (sr) corresponds to Definition convolutional 

function. This indicates that 

 

C—1(κr, xr) = CS(s)—1(κr) × Cd,2(sr)—1(xr) 

= {(κ, x) ∈ X × ZN | dS(κ, κr) ≤ s and dZN (x, xr) ≤ sr} for all 

(κr, xr) ∈ X × ZN. 

 

First, we create a layer that, together with the standard 

methods, can locate itself based on its location on a circle. 

L∞− place inside a convolutional layer. Let S1 = {κ ∈ R2 | |κ| 

= 1} constitute the plane's unit circle R2. A typical 

discretization of S1 is the set of n-th roots of unity X = 

{e2πik/n | 0 ≤ k ≤ n − 1} for some n ≥ 1. 

 

Definition: Let X, Xr ⊂ S1 two separate representations of 

the circle. Let Vi = X × Z2 and Vi+1 = Xr × Z2 to form an 

FFNN's consecutive layers. Set a limit s ≥ 0. 

The relationship between the rings CS(s) ⊂ X × Xr is defined 

by 

 

CS(s)—1(κr) = {κ ∈ X | dS(κ, κr) ≤ s} 

 

for all κr ∈ Xr, when the measure dS is provided by 

dS(κ, κr) = cos—1(κ · κr) for κ, κr ∈ S1. 

 

If the shape of the correspondence that determines the edge 

C ⊂ Vi × Vi+1 is the same for all other thresholds sr ≥ 0, 

then we refer to Vi+1 as a circle one layer (COL). 

 

C = CS(s) × Cd,2(sr), 

 

where Cd,2(sr) corresponds to Definition convolutional 

function. This indicates that  

 

C—1(κr, xr, yr) = CS(s)—1(κr) × Cd,2(sr)—1(xr, yr) 

 

 
for all (κr, xr, yr) ∈ X × Z2. 

 

A layer based on a measure on Klein bottle K is then 

established to identify weights. The nodes and weights are 

shown graphically. Remember that by dividing R2 by the 

relations, the 2-dimensional manifold K is formed. 

 (θ1, θ2) ∼ (θ1 + 2kπ, θ2 + 2lπ) for k, l ∈ Z and (θ1, θ2) ∼ (θ1 

+ π, −θ2). The building incorporates an FK-squared 

embedding into the space of vectors expressing quadratic 

functions [−1, 1]2inspired by the Klein bottle that was 

shown inserted and how it showed up in the CNN weights. 

https://multiresearchjournal.theviews.in/
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An integrated FK(θ1, Θ2) picture patch inside the Klein 

bottle being 'oriented' naturally by the angle θ1. At an angle 

to the viewer's eyes, lines cut across the middle of the 

picture. θ1 + π/2; Observe the picture in the upper right 

corner. The embedded code is generated by 

 

FK(θ1, θ2)(x, y) = sin(θ2)(cos(θ1)x + sin(θ1)y) + 

cos(θ2)Q(cos(θ1)x + sin(θ1)y), 

 

Where  

Q(t) = 2t2 − 1. As given, FK applies to the torus, with the 

two angles serving as its parameters. θ1 and θ2. Given that it 

meets, it does in fact define a function on K. FK(θ1, θ2) = 

FK(θ1 + 2kπ, θ2 + 2lπ) and FK(θ1 + π, −θ2) = FK(θ1, θ2). 

 

2D IMAGES 

Experiments and Results 

The picture datasets provided are the basis for several 

investigations that we carry out. Working with separate 

datasets, we examine how Gaussian noise impacts TCNN 

training, TCNN activation interpretability, and TCNN 

learning rate as measured by testing accuracy over many 

batches. We study the generalizability tested TCNNs on 

many datasets, each trained on a different dataset. In each of 

these areas, we evaluate TCNNs in comparison to classic 

CNNs.  

The picture datasets provided are the basis for several 

investigations that we carry out. Working with separate 

datasets, we examine how Gaussian noise impacts TCNN 

training, TCNN activation interpretability, and TCNN 

learning rate as measured by testing accuracy over many 

batches. We study the generalizability tested TCNNs on 

many datasets, each trained on a different dataset. In each of 

these areas, we evaluate TCNNs in comparison to classic 

CNNs.  

 

Description of Data 

We classify numbers on three datasets: USPS, MNIST, and 

SVHN. While all of these files include pictures of the 

numbers 0 through 9, their styles couldn't be more different. 

Specifically, it is quite easy for a human to tell which 

dataset a certain photograph is a part of. Because neural 

networks trained on one dataset tend to overfit to the 

specific style and idiosyncrasies of that dataset, they will 

have trouble generalizing to the other datasets, even if the 

numbers in each dataset seem different. 

The datasets are available at three quite different 

resolutions: 162, 322, and 282. The datasets also differ 

greatly in size, with 7e3, 5e4, and 7e4 being the 

approximate values. In contrast to MNIST and USPS, which 

use handwritten numbers, SVHN uses typeset numbers. 

Numbers from SVHN are unprocessed images of typeset 

numbers that may include distortions, tilts, secondary digits, 

or other irregularities, as opposed to the direct two-

dimensional imprints used by MNIST and USPS. 

Additionally, we make use of the CIFAR-10 cat and dog 

labeled photos as well as the Cats vs. Dogs collection 

(which we refer to as Kaggle) of tagged images of cats and

dogs. We downloaded a lot of empty or corrupted photos 

from the Kaggle Cats vs. Dogs dataset, so the size we're 

reporting here just represents the sum of all photos that can 

be loaded.  

This seems to be the typical behavior for this dataset. One 

dataset has 2.5e4 photographs, whereas the other contains 

1.2e4 images. Picture collection contained inside a single 

dataset have a resolution of 502 pixels and those in the other 

of 322 pixels. To ensure that the neural network trained on 

one dataset can be evaluated on both, we reduce the 

resolution of 322 rows of data from Kaggle so it matches 

CIFAR-10's dimensions. This allows us to assess the 

network's generalization accuracy. 

 

Synthetic experiments 

A key premise of this study is that constrained convolutional 

neural networks discusses convolutional neural networks 

(CNNs) for training on slices according to the Klein bottle 

topology and for using Klein bottle filters would 

immediately provide the model with very relevant local 

information. Thus, when global noise is introduced to the 

pictures, we anticipate using CF, KF, COL, and KOL layers 

to train a model would perform better than traditional 

CNNs. To put this theory to the test, we introduce class-

correlated Gaussian noise. to our images, 

where k and  A key 

premise of this study is that constrained convolutional 

neural networks discusses convolutional neural networks 

(CNNs) for training on slices according to the Klein bottle 

topology and for using Klein bottle filters would 

immediately provide the model with very relevant local 

information. Thus, when global noise is introduced to the 

pictures, we anticipate that a model trained on our CF, KF, 

COL, and KOL layers would perform better than traditional 

CNNs. To put this theory before putting it to the test, we 

inject class-correlated typical random noise. of . the 

outcomes of this experiment conducted on MNIST. Training 

or testing pictures with Gaussian noise drastically reduces 

the performance of a traditional two-layer network. Given 

the presence of more to the training set, we expect the CNN 

to learn the class-correlated , and then do badly on 

the non-Gaussian test set. include model loss, and it's 

evident that the 2-layer conventional CNN is accurately 

classifying inside the training set. We hypothesise that the 

TCNNs' exceptional success in the noisy training set 

experiment is a result of the fixed filters in the CF and KF 

layers. These filters compel a smoothing of the noise before 

the learnt layers, which in turn produces classifiers that are 

insensitive to global noise. For the noisy test set experiment, 

the TCNNs outperformed the competitors thanks to a 

comparable smoothing reasoning. 

We will now choose parameters τ and ϋ ranging from 0 to.8 

in increments of.2 and do the sampling µk ∼ N (τ, .04) and 

σ2 ∼ χ2(1) × ω2. In the first column we simulate distributions 

µk ∼ N (τ, .04) and σ2 ∼ χ2(1) × .04 evaluating the parameter 

τ for values between 0 and.8 with 0.2 increments. 

https://multiresearchjournal.theviews.in/
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Fig 1: The table displays the activations and weights for three 

convolutional layers (a), (b), and (c) as they were tested on a 

handwritten 5 from MNIST. 

 
Table 1: The picture datasets used in this study, including their 

sizes, dimensions, and origins. 
 

 
 

Distributions are modelled in the second column µk ∼ N (.2, 

ω2) and σ2 ∼ χ2(1) × ω2 testing ω from 0 to .8 in increments 

of .2. 

In order to start, to see that we use data with Gaussian noise 

for training and actual data for testing, we look at the top 

row of simultaneously modifying τ and ϋ2. Despite the 

presence of an uncorrelated noise component, the class 

correlated signal of the extra noise is negligible, with µk 

being very small, since ω2 remains 0.04 when τ is 0. This 

noise lowers every model's precision. During the training 

process, the standard CNN is exceeded by the TCNN as τ 

grows. All of the models work in a similar way when ϋ2 is 

small, but when it's large, they all not do well enough. 

Nevertheless, the TCNN surpasses the CNN throughout a 

broad spectrum of ό2 values.  

 

Interpretability 

The variation in activations seen in images filtered using 

NOL, CF, and KF by MNIST., which allows us to compare 

the interpretability of CNNs and TCNNs. Training on the 

MNIST training data (n = 6e10) shows the activations which 

represent the results from the first layer of the CF, KF, and 

NOL model is used to experimentally generate the NOL 

filters. Eighteen CF filters represent sixteen equally 

interconnected angles on a sphere, in contrast to sixteen KF 

filters represent sixteen values for two Klein bottle angles, 

each with an equal spacing of four. 

 

Rate of learning 

Importantly, Networks that have a KF layer achieve high 

levels of accuracy more rapidly during training compared to 

those that do not, suggesting that they may be suitable for 

smaller datasets that need less training. Additionally, we 

demonstrate that the KF + KOL and KF + COL networks 

outperform NOL + NOL in terms of accuracy. Two datasets 

that benefited more from TCNNs than MNIST were the 

richer SVHN dataset and the lower-resolution USPS dataset. 

As a result, it seems that TCNN feature engineering works 

best when concealed or have weak local spatial priors. 

 

Generalizability 

We also assess the generalizability of models trained on 

dogs vs. cats’ datasets from Kaggle and CIFAR, as well as 

models trained on MNIST and evaluated on SVHN. To see 

how testing accuracies changed throughout training. In the 

fields of numbers and cats vs. dogs, the TCNNs accomplish 

respectable generalization. When moving from MNIST to 

SVHN, the KF + KOL TCNN achieves a generalization 

accuracy of 30% and when moving from SVHN to MNIST, 

it achieves a generalization accuracy of over 60%. This is in 

stark contrast to the NOL + NOL traditional CNNs' 10% 

generalization accuracy between MNIST and SVHN, which 

is equivalent to pure guesswork. Keep in mind that these 

outcomes were unaffected by the inclusion of a pooling 

layer. The gap between TCNNs and CNNs for generalizing 

between the CIFAR cats vs. dog’s dataset and the Kaggle 

dataset is less than it is for digit classification, but it is still 

noticeable. In this case, adding pooling layers improves 

TCNN generalizability even more but has little effect on 

CNN generalizability. 

 

Gabor filters versus Klein bottle filters 

It is possible to think of the Klein bottle filters that belong to 

the 5-parameter Gabor filter family given by equation (3.6) 

as a subset of the FK-embedded filters in equation (3.2), as 

previously shown. One may build a convolutional layer 

similar to the KF layer using the initialized and frozen filters 

for any subset of Gabor filters. Here, we evaluate a KF layer 

alongside one that is instantiated with a different set of 

Gabor filters and determined by the parameters listed in 

(3.7).  

Although there is topological justification for the 

importance of the 2-parameter Klein bottle filter family in 

image analysis, the selection of a different Gabor filter 

family is currently not possible, hence, the family of two 

parameters in equation (3.7) is intrinsically somewhat 

arbitrary. We made this option based on a heuristic since 

these filters are high contrast and infrequently sampled from 

both φ and ω. In order to achieve strong contrast in the 3 × 3 

filters, the empirically determined fixed parameters σ, λ, and 

γ are selected. In parameterization FK of Klein bottle filters, 

the variable parameter ϋ serves the same purpose as the 

parameter θ1 in terms of filter rotation. 
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By substituting these particular Gabor filters for the Klein 

filters in the KF topological layer, we are able to construct a 

'Gabor' convolutional layer. Using the datasets examined in 

this study, we train a convolutional network that combines 

Gabor and NOL with a conventional NOL + NOL network 

and evaluate its performance in comparison. Take a look at 

3.10. We discover that, in comparison to Gabor filters, Klein 

bottle filters work as well as, if not better than, the latter. To 

test the hypothesis, this indicates that the Klein bottle filters 

work well as Gabor filters in the topological layers of a 

TCNN. Because Gabor filters are members of a vast 5-

parameter family, it is imperative that a very limited 

selection be selected for this sort of construction. The 

usually tiny kernels of CNNs make it much more 

challenging to understand a few of the characteristics. 

 

Details of methods 

Train/test splits 

Concerning divides between training and testing, we do two 

types of experiments: (1) comparing the accuracy of TCNNs 

and CNNs on a specific dataset, and (2) training TCNNs and 

CNNs on a single dataset and validating it on another to 

assess the model's generalizability. As a first step, we 

created two sets of data: a training version and a test 

version. In the second kind, we train and test on all datasets. 

The train/test divides for Type (1) appear as follows: 

For type (2), we use the lowest resolution in the comparison 

to determine the picture dimensions; in other words, we 

bring down the quality of the higher resolution photos so 

that we can assess generalizability more easily. 

 

Meta parameter selection 

It seems that we do not have a bias towards any single 

model in our experiment; rather, we choose metaparameters 

that enable us to compare the performance of TCNN with 

that of typical CNNs. To facilitate technique comparison, 

we stick to a standard, uncomplicated set of network 

requirements. All models must be able to properly traverse 

the optimized loss function before we can proceed with 

selecting an optimizer, batch size, learning rate, etc.  

We uniformly apply a single configuration across all models 

in the tests. Of course, the specific outcomes change as a 

consequence of various configuration options, but our 

results are typically stable across all of them. Because our 

modifications stay inside the standard CNN architecture, we 

anticipate that meta-parameter selection won't significantly 

alter the relative merits of TCNNs compared to regular 

CNNs. 

Detailed descriptions of the meta parameters and further 

information about our rationale are provided below. All of 

the models included in the publication have the same meta 

parameters within each figure. Various meta parameters are 

included in the following table according to the figure 

number. convolutional layers. Experiments not included 

were trained using a 2-layer convolutional neural network 

(CNN), which enables us to include a feature layer. 

 
 

Fig 2: In order to verify the model's assumptions, two simulated 

experiments were conducted using noisy MNIST data. The results 

of the experiment are shown in the first column. The training data 

was exposed to Gaussian noise, but the testing data was not. 

Experiment results with original MNIST data used as training and 

damaged testing data due to Gaussian noise are shown in the 

second column. Accuracy in testing and training loss are shown in 

the first two rows, respectively. 

 
Table 2: Datasets of numerical images: testing and trade 

 

Dataset Train Test 

MNIST 85% 15% 

SVHN 80% 20% 

USPS 80% 20% 

 
Table 3: Associated metaparameters with the figures shown here. 

 

Conv-layers Conv-slices Kernel size LR Batch size Epochs 

1 16 5 1e−4 100 1 

2 64 3 1e−5 100 5 

2 64 3 1e−4 100 1 

2 64 3 1e−5 100 5 

 

 
 

Fig 3: Examining the distributions of synthetic MNIST data with 

different means and variances for class-noise estimates. Both the 

first and second columns display the tested values of τ and ω2, 

respectively. Accuracy during training on a data set with Gaussian 

noise and testing on an unmodified test set are shown in the first 

row. Accuracy during training and testing on unmodified and 

noise-added data sets is shown in the second row. After 1 and 5 

training epochs, we display the findings. 
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Fig 4: Testing accuracy comparisons after 1,000-image training (left). On the right, you can see a single epoch's worth of testing accuracy 

compared side by side. Training sets for MNIST, SVHN, and USPS included 60,000, 50,032, and 7291 pictures, respectively. 

 

Conclusion 

We evaluated various distance-based classifiers. A 

resampling strategy, a persistence diagram vectorization, 

and a support vector machine classifier make up our most 

effective method Theoretical understanding of the space of 

natural pictures and results on the long-run topologies of 

well-trained CNNs are the building blocks of this 

framework. Several such formulations were compared and 

contrasted with one another and a standard CNN in terms of 

their empirical findings. Based on actual facts and/or 

theoretical linkages to a logical manifold, this work may be 

used as a template to construct endless models with 

expanded topologies. In a number of tests involving the 

categorization of images and videos, I proved that this 

generalization was effective. 
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