
321 https://multiresearchjournal.theviews.in

E-ISSN: 2583-9667

Indexed Journal

Peer Reviewed Journal

https://multiresearchjournal.theviews.in

Received: 05-02-2025

Accepted: 19-03-2025

INTERNATIONAL JOURNAL OF ADVANCE RESEARCH IN MULTIDISCIPLINARY

Volume 3; Issue 2; 2025; Page No. 321-326

Ipl Score Prediction Using Deep Learning

1I Angel Lisha and 2Dr. R Parameswari

1PG Scholar, Department of Computer Science, Vels Institute of Science, Technology and Advanced Studies, Pallavaram,

Chennai, Tamil Nadu, India
2Assistant Professor, Department of Computer Science, Vels Institute of Science, Technology and Advanced Studies,

Pallavaram, Chennai, Tamil Nadu, India

DOI: https://doi.org/10.5281/zenodo.15592129

Corresponding Author: I Angel Lisha

Abstract

This project focuses on creating a machine learning model designed to predict cricket scores by analyzing historical match data and various

influencing factors. Our approach utilizes sophisticated algorithms to assess player performance, team statistics, pitch conditions, and other

pertinent variables. By leveraging deep learning techniques, the model identifies patterns from previous matches to predict future cricket

scores. With thorough training, it enhances its accuracy in making these predictions. This model serves as a valuable resource for forecasting

the outcomes of cricket matches, allowing fans and analysts to better anticipate results.

The initiative not only advances the realm of sports analytics but also provides meaningful insights for fans, teams, and cricket enthusiasts. It

aims to improve the precision of score predictions within the ever-changing and unpredictable landscape of cricket.

Keywords: Ipl, Prediction, Deep, Learning, patterns, Computer Science

Introduction

Cricket, recognized as one of the most widely followed

sports globally, has experienced a significant increase in

popularity due to the emergence of Twenty20 (T20) cricket.

Competitions such as the Indian Premier League (IPL) have

transformed the sport and created numerous opportunities

for data analysis and forecasting. Given the fast-paced and

dynamic nature of the matches, accurately predicting scores

has evolved into a complex yet fascinating challenge. In

recent years, the use of deep learning methods in sports

analytics has seen considerable growth. Deep learning

models, especially Recurrent Neural Networks (RNNs)

implemented with TensorFlow and Keras, have

demonstrated encouraging outcomes across multiple fields,

such as natural language processing, image recognition, and,

more recently, sports analytics. This initiative intends to

utilize deep learning techniques to forecast scores in IPL

matches. Accurate score predictions can offer significant

insights for teams, coaches, and cricket fans alike. By

examining historical match data, which encompasses

elements such as the venue, team lineup, batting order, and

previous performances, our model aims to estimate the final

score of an IPL innings.

Objectives

The main goals of this project are outlined as follows

The development of a Deep Learning Model involves

constructing and training a neural network aimed at

predicting the total score of an IPL innings.

Acquiring historical IPL match data is essential for

effectively training our model. We will source this data

from reputable platforms, including Kaggle and the official

IPL website. The preprocessing phase will consist of data

cleaning, addressing missing values, and encoding

categorical variables.

Feature Selection: It is vital to identify the most pertinent

features that influence score predictions. We will examine

various elements such as the batting team, bowling team,

overs bowled, runs scored, wickets taken, among others.

Model Evaluation: To evaluate our model's performance,

we will utilize metrics like the Mean Absolute Error (MAE)

score.

Deployment and Application: After training and

evaluating the model, we will develop a user-friendly

https://multiresearchjournal.theviews.in/
https://multiresearchjournal.theviews.in/
https://doi.org/10.5281/zenodo.15592129

International Journal of Advance Research in Multidisciplinary https://multiresearchjournal.theviews.in

322 https://multiresearchjournal.theviews.in

interface that allows users to input live match data for real-

time score predictions.

Motivation

The impetus for this project arises from the growing

necessity for data-driven insights within the realm of sports,

especially in cricket. The Indian Premier League (IPL),

recognized as a premier T20 cricket league, draws millions

of viewers worldwide, creating an ideal environment for

data analysis and forecasting.

In cricket, where each delivery and every run can

profoundly affect the match's result, data-informed decision-

making has become essential. Teams are continually

exploring methods to secure a competitive advantage,

whether through team composition, optimizing batting

order, or refining bowling tactics. By accurately forecasting

scores, teams can adjust their strategies accordingly. For

example, understanding the anticipated score can guide

decisions on whether to deploy aggressive batsmen or

concentrate on forming partnerships. Coaches and analysts

can leverage these predictions to formulate strategies that

enhance their team's likelihood of success.

Overview of Project

This initiative seeks to connect conventional cricket analysis

with advanced deep learning methodologies. By creating a

comprehensive model for predicting IPL scores, the project

will Equip teams with an essential resource for making

informed strategic choices during games. Offer cricket fans

an engaging platform

to forecast scores and examine the intricacies of match

dynamics. Enhance the expanding domain of sports

analytics, showcasing the real-world applications of

machine learning in the realm of cricket.

Model evaluation

Mean Absolute Error (MAE)The Mean Absolute Error

(MAE) is a widely utilized metric in regression analysis,

including the prediction of sports scores. It quantifies the

average absolute difference between predicted and actual

values. In the realm of IPL score forecasting, MAE serves

as a valuable tool for assessing the accuracy of our models

in estimating the total score of an IPL innings. In the IPL

score prediction initiative, the Mean Absolute Error (MAE)

offers a clear indication of how effectively our models are

estimating the total scores of IPL innings. A lower MAE

signifies enhanced predictive accuracy. By analyzing the

models through the lens of MAE, we can make well-

informed choices regarding which model demonstrates

superior performance and whether our predictions are

adequately precise for practical applications in cricket

analytics. Throughout the model training and evaluation

stages, our emphasis will be on reducing the MAE by fine-

tuning model architecture, hyperparameters, and

preprocessing methods to enhance the accuracy of our IPL

score predictions.

Methodology

Software environment: In a project aimed at predicting

IPL scores, we utilize tools such as TensorFlow, recurrent

neural networks, mean absolute error (MAE), MinMax

Scaler, and Keras. Additionally, manual testing is

incorporated, necessitating a software environment

conducive to the development, training, and evaluation of

these models. Programming Language, Python, This

language is extensively employed in machine learning and

natural language processing, boasting a wide array of

libraries and frameworks that facilitate algorithm

implementation and system construction. Google Colab This

platform enables us to execute our model efficiently,

providing accurate and accessible instances.MS Excel: This

tool is utilized for data management and cleansing during

this phase. Manual Testing Environment: This setup allows

human reviewers to input data and receive the c predicted

scores as output. Clear Syntax Python's syntax is crafted to

be user-friendly and comprehensible, resembling pseudo-

code, User-Friendly The simplicity of Python's syntax

makes it approachable for both novices and seasoned

programmers. Data Science Libraries, Python offers a robust

collection of libraries specifically designed for data science

and machine learning, including TensorFlow, Scikit-learn,

Pandas, and NumPy, Web Development: For potential

deployment of models, frameworks such as Flask and

Django are commonly used. Data Visualization Libraries

like Matplotlib and Seaborn offer powerful capabilities for

visualizing data, which aids in data exploration and

assessing model performance. Extensive Community

Python benefits from a large and active developer

community, making it easy to access solutions, tutorials, and

support online. Open-source, The majority of Python

libraries and frameworks are open-source, fostering

collaboration and innovation. Python's integration with

Google Colab facilitates interactive development, making it

particularly suitable for exploratory data analysis (EDA) and

model prototyping.

Architecture

https://multiresearchjournal.theviews.in/
https://multiresearchjournal.theviews.in/

International Journal of Advance Research in Multidisciplinary https://multiresearchjournal.theviews.in

323 https://multiresearchjournal.theviews.in

System Implementation

DATA HANDLING: pandas (import pandas as pd): This

library is employed for reading and manipulating datasets.

numpy (import numpy as np): It is used for performing

numerical operations and managing arrays. matplotlib.

pyplot (import matplotlib. pyplot as plt): This module

facilitates the creation of plots and visual representations.

seaborn (import seaborn as sns): A library designed for

statistical data visualization, often utilized to produce more

visually appealing plots. Deep Learning sklearn (from

sklearn import preprocessing): The preprocessing module is

specifically used for label encoding and feature scaling.

keras (import keras): This is a high-level API for neural

networks, utilized for constructing and training neural

network models. tensorflow (import tensorflow as tf):

TensorFlow is an open-source library for deep learning,

with Keras integrated for the development of neural

networks.

Widgets and User Interface ipywidgets (import ipywidgets

as widgets): This library is utilized for developing

interactive widgets within Jupyter notebooks. I Python.

display (from IPython. display import display,

clear_output): This module is employed for rendering output

in Jupyter notebooks.

Other Modules Warnings (import warnings): This module is

used to handle warning messages effectively. LabelEncoder

(from sklearn. preprocessing import LabelEncoder): A

component from scikit-learn designed for converting

categorical features into numerical representations.

Model Training and Evaluation

▪ Keras.Sequential: Utilized for constructing the

sequential model.

▪ Keras.layers.Input: Represents the input layer of the

neural network.

▪ Layers.Dense: Implements dense layers equipped with

activation functions (ReLU for hidden layers and linear

for the output layer).

▪ Keras.losses.Huber: The Huber loss function is

applied for regression tasks.

▪ Keras.optimizers.Adam: The Adam optimizer is used

for model training.

▪ Model.fit(): This function trains the model, specifying

epochs, batch size, and validation data.

▪ Model.History.History: Captures the training history

of the model for visualization purposes.

Overall Architecture

The code is organized in a modular format, incorporating

essential libraries and modules for data management,

preprocessing, model training, evaluation, and an interactive

user interface (UI) through widgets. Key functionalities

encompass data preprocessing with pandas and scikit-learn,

model construction using Keras/TensorFlow, and an

interactive UI for predicting IPL scores.

Implementation Details

Begin by collecting the dataset and saving it in the

designated directory. Open Google Colab and upload the

dataset using the upload option. Import all necessary

modules required for extracting details pertinent to the IPL

score prediction process. Conduct data analysis to ensure the

dataset is optimized for use. Deep learning techniques,

including recurrent neural networks, along with libraries

such as Keras, TensorFlow, and NumPy, are employed to

forecast scores based on the dataset. The dataset is divided

into two subsets: a training dataset and a testing dataset. The

training dataset is utilized to train the model, while the

testing dataset is reserved for evaluation.

Testing

The model developed using the training dataset enables us

to predict scores. The test dataset is utilized to assess the

accuracy of the model, which is the most critical aspect of

the project. This dataset includes the following elements:

match ID, inning, over, ball, batting team, bowling team,

batsmen, non-striker, bowler, runs scored, extras, wide balls,

no balls, byes, leg byes, penalties, type of dismissal, venue,

and total.

Label encoding

Initially, we import the Label Encoder from the sklearn.

preprocessing module. Subsequently, we instantiate a

distinct LabelEncoder object for each categorical feature,

which includes venue, bat_team, bowl_team, batsman, and

bowler. Each LabelEncoder object is then fitted to the

unique categories of its corresponding feature using the

fit_transform() method. This method not only fits the

encoder to the unique categories but also converts these

categories into numerical labels. The resulting numerical

labels are then reassigned to their respective feature

columns within the DataFrame X.

Fig 1: Picture of the dataset used for the prediction process

https://multiresearchjournal.theviews.in/
https://multiresearchjournal.theviews.in/

International Journal of Advance Research in Multidisciplinary https://multiresearchjournal.theviews.in

324 https://multiresearchjournal.theviews.in

Code

The Purpose of Label Encoding: Label encoding serves

the function of transforming categorical data into a

numerical format, a necessity for numerous deep learning

algorithms. It is crucial to recognize that label encoding can

create an ordinal relationship, which may not be suitable for

every categorical variable. In cases of nominal features,

where categories lack a natural order, one-hot encoding is

typically favored to prevent any unintended biases in the

model.

Trian Test Spilt

Explanation

Initially, we import the train_test_split function from the

sklearn.model_selection module. Next, we invoke

train_test_split with the following parameters:

X: Represents the feature matrix (independent variables). y:

Denotes the target vector (dependent variable). test_size:

Specifies the fraction of the dataset allocated for the test

split. In this case, it is set to 0.3, indicating that 30% of the

data will be reserved for testing.Random_state: Manages the

shuffling of the data prior to the split. By setting a specific

random_state, we ensure that the split can be reproduced

consistently.

The function outputs four arrays

X_train: The feature matrix designated for the training set.

X_test: The feature matrix allocated for the testing set.

y_train: The target vector assigned to the training set.

y_test: The target vector assigned to the testing set.

Purpose of Train-Test Split

Dividing the dataset into training and testing sets is crucial

for assessing the model's performance on data it has not

encountered before. The model is trained using the training

set and subsequently evaluated on the testing set to

determine its ability to generalize. This process aids in

identifying issues related to overfitting or underfitting and

provides an estimate of the model's effectiveness on new,

unseen data.

Minmax Scaler

Explanation

Initially, we import the MinMaxScaler class from the

sklearn. preprocessing module.

Subsequently, we create an instance of MinMaxScaler,

referred to as scaler.

Following this, we apply the fit_transform method to the

scaler using the training data (X_train). This process

calculates the minimum and maximum values for each

feature in the training dataset and scales the features

accordingly.

Finally, we utilize the fitted scaler to transform both the

training and testing datasets (X_train and X_test). The

transform method applies the scaling determined during the

fitting phase.

Purpose of Min-Max Scaling: Min-Max scaling, also known

as normalization, adjusts the features to a specified range,

usually between 0 and 1. This technique maintains the

original distribution's shape while ensuring that all features

are comparable in scale. Min-Max scaling is especially

beneficial for algorithms that necessitate features to be

uniformly scaled, such as neural networks.

KERAS

Explanation

Initially, the Keras library is imported.

The neural network model is constructed using the

Sequential API, which facilitates the linear stacking of

layers.

The architecture includes an input layer (Input) followed by

two hidden layers (Dense) that utilize ReLU activation

functions and feature varying unit counts (512 and 216).

The output layer (Dense) comprises a single unit with a

linear activation function, making it appropriate for

regression tasks.

The model is compiled through the compile method, where

the Adam optimizer and Huber loss function are selected.

Huber loss is preferred due to its resilience against outliers

in comparison to mean squared error (MSE).

https://multiresearchjournal.theviews.in/
https://multiresearchjournal.theviews.in/

International Journal of Advance Research in Multidisciplinary https://multiresearchjournal.theviews.in

325 https://multiresearchjournal.theviews.in

The model is trained using the fit method with the scaled

training data (X_train_scaled, y_train). The training process

specifies 50 epochs and a batch size of 64, while validation

data (X_test_scaled, y_test) is included to assess the model's

performance throughout the training phase.

Purpose of Keras:Keras offers a high-level interface for

constructing, training, and deploying neural network

models. It provides user-friendly APIs that simplify the

definition of intricate neural network architectures with

minimal coding effort. Built on top of TensorFlow, Keras

ensures smooth integration with TensorFlow's features and

ecosystem.

Model Taring

Explanation: The fit() method is invoked on the neural

network model (model) to train it using the supplied data.It

accepts several parameters:

 X_train_scaled: The scaled input features from the training

dataset.

 y_train: The corresponding target values (labels) for the

training data. epochs: The total number of epochs (complete

passes through the training dataset) for model training,

which is set to 50 in this instance. batch_size: The number

of samples processed before the model's internal parameters

are updated, set to 64 here.

validation_data: An optional set of validation data used to

assess the model's performance at the conclusion of each

epoch. This is provided as a tuple (X_test_scaled, y_test),

which includes the scaled features and target values for

testing.The accuracy of the datasets has been effectively

confirmed through the aforementioned parameters, resulting

in a commendable accuracy score.

Make Prediction

Once all the aforementioned steps are completed, our model

will be prepared to forecast the score of a team batting first.

Explanation: Initially, the trained model is employed to

estimate the IPL scores for the test dataset (X_test_scaled),

with the results stored in the predictions variable.The mean

absolute error (MAE) is computed to assess the difference

between the actual targets of the test set (y_test) and the

predicted scores, utilizing the mean_absolute_error function.

Interactive widgets (ipywidgets) are developed to facilitate

user input, including dropdown menus for selecting the

venue, batting team, bowling team, striker, and bowler,

along with a button (predict_button) to initiate the

prediction process. A function named predict_score is

established to manage the prediction when the button is

activated. Within the predict_score function:The user-

selected encoded values are converted back to their original

forms using the corresponding LabelEncoder objects. An

input array is generated with these decoded values and

reshaped to conform to the input dimensions required by the

model.The input data undergoes scaling through the fitted

MinMaxScaler..The model then predicts the IPL score based

on the input data, and the resulting score is presented to the

user.The predict_button is set up to invoke the predict_score

function upon being clicked. An output widget is utilized to

display the predicted score to the user.

Verification output

The image above displays the output generated based on the

user's input. The deep learning concepts have meticulously

verified the data and have undergone numerous algorithmic

assessments, resulting in the prediction of a score by this

model.

Results

The IPL score prediction project has been successfully

carried out utilizing the Python programming language.

Deep learning algorithms were employed to forecast the

scores, demonstrating a remarkable accuracy rate in the

results obtained.

Following the implementation of the aforementioned

processes, a manual testing phase was conducted, during

which users entered data to verify the model's predictions.

The results accurately indicated the score expected from the

first batting team. Consequently, the IPL score predictor

project has been effectively implemented, executed,

andvalidated.

https://multiresearchjournal.theviews.in/
https://multiresearchjournal.theviews.in/

International Journal of Advance Research in Multidisciplinary https://multiresearchjournal.theviews.in

326 https://multiresearchjournal.theviews.in

Conclusion

In summary, the IPL score prediction initiative effectively

showcases the utilization of machine learning

methodologies, particularly deep learning through neural

networks, to forecast the scores of IPL matches. The project

involved several critical phases, such as data preprocessing,

model development and training, evaluation, and the design

of an interactive user interface for making predictions.

Additionally, this project enhanced my comprehension of

Python, its associated libraries, and fundamental machine

learning principles. The insights gained from this endeavor

will undoubtedly assist me in the future as I pursue the

development of additional projects.

Future work

The IPL score prediction initiative has established a strong

groundwork; however, there are numerous opportunities for

further investigation and improvement. Consider

incorporating additional elements such as weather

conditions, pitch characteristics, team performance, player

metrics, and historical match information. Test various

combinations and transformations of features to uncover

intricate relationships and enhance the accuracy of

predictions. Examine advanced neural network models,

including recurrent neural networks (RNNs), to effectively

capture temporal and spatial dependencies within match

data. Utilize ensemble learning methods, such as stacking or

blending, to merge predictions from different models,

thereby boosting overall performance. Create a scalable and

resilient deployment pipeline to facilitate real-time score

predictions for IPL matches.

Launch the model as a web service or API, enabling users to

obtain predictions across multiple platforms and devices. By

exploring these potential avenues, the IPL score prediction

project can transform into a comprehensive and influential

resource for cricket fans, analysts, and stakeholders,

offering valuable insights and improving decision-making in

the ever-evolving realm of cricket.

References

1. Python Crash Course: A Practical, Project-Based

Approach to Programming by Eric Matthes.

2. The Hundred-Page Machine Learning Book by Andriy

Burkov.

3. Machine Learning Yearning by Andrew Ng.

Creative Commons (CC) License

This article is an open access article distributed under

the terms and conditions of the Creative Commons

Attribution (CC BY 4.0) license. This license permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

https://multiresearchjournal.theviews.in/
https://multiresearchjournal.theviews.in/

