
518 https://multiresearchjournal.theviews.in 

 

E-ISSN: 2583-9667 

Indexed Journal 

Peer Reviewed Journal 

https://multiresearchjournal.theviews.in  

 

 

Received: 13-11-2023 

Accepted: 21-12-2023 
 

INTERNATIONAL JOURNAL OF ADVANCE RESEARCH IN MULTIDISCIPLINARY 

Volume 2; Issue 1; 2024; Page No. 518-523 

  

 
Integrating real-time data streams with Ai-driven business analytics to 

optimise epidemic preparedness 

 
1Justin Babu and 2Dr. Praveen Mittal 

 
1Research Scholar, Department of Management, North East Christian University, Dimapur, Nagaland, India 
2Professor, Department of Management, North East Christian University, Dimapur, Nagaland, India 

 

Corresponding Author: Justin Babu 
 

Abstract 

Epidemics continue to pose significant threats to public health and economic stability worldwide. The rapid transmission of infectious 

diseases calls for timely and effective interventions, underscoring the need for advanced predictive systems. This paper proposes an 

integrated framework that combines real-time data streams, artificial intelligence (AI) forecasting models, and business analytics (BA) tools 

to enhance epidemic preparedness. By harnessing diverse data-from epidemiological records and environmental sensors to mobility patterns 

and social media trends-the system aims to deliver accurate predictions and actionable insights. AI techniques, including Random Forests, 

Support Vector Machines, Gradient Boosting, and Long Short-Term Memory (LSTM) networks, are deployed to identify early outbreak 

signals, while BA methods such as regression analysis, Monte Carlo simulations, and linear programming help evaluate intervention 

strategies and optimise resource allocation. The integration of real-time data ensures the model remains adaptive and robust, while the use of 

explainability frameworks enhances transparency. The results of extensive simulations and stakeholder evaluations suggest that this 

integrated approach can substantially improve epidemic response by supporting evidence-based decisions and reducing the economic and 

health impacts of outbreaks. The paper concludes with recommendations for further research and outlines a roadmap for real-world 

implementation. 
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Introduction 

In recent decades, the emergence and re-emergence of 

infectious diseases have underscored the critical importance 

of preparedness and timely intervention. Outbreaks such as 

SARS, H1N1, Ebola, and most recently COVID-19 have 

highlighted both the strengths and limitations of 

conventional public health systems. Traditional 

epidemiological models, while useful in understanding 

disease spread, often rely on retrospective data and struggle 

with the speed required for real-time decision-making. In 

contrast, the proliferation of real-time data sources-

including environmental sensors, mobile devices, and social 

media platforms-offers unprecedented opportunities to 

monitor and respond to epidemics as they unfold. 

The integration of artificial intelligence (AI) with business 

analytics (BA) provides a promising avenue to bridge these 

gaps. AI models excel at processing vast amounts of 

heterogeneous data and identifying subtle patterns that may

signal the early stages of an outbreak. However, these 

models often function as “black boxes,” which can hinder 

trust and practical application. Conversely, BA techniques 

can transform raw predictive outputs into strategic insights, 

offering policymakers clear guidance on resource allocation, 

economic implications, and intervention effectiveness. 

This research paper proposes a comprehensive framework 

that integrates real-time data streams with AI-driven 

forecasting and BA-based decision support. The objective is 

to develop a system that not only predicts epidemic trends 

with high accuracy but also delivers transparent, actionable 

insights to optimise epidemic preparedness. The paper is 

structured as follows: the Literature Review (LR) examines 

previous efforts in real-time epidemic monitoring and the 

convergence of AI and BA; the Methodology section 

outlines the data collection, model development, and 

validation processes; Results and Analysis present the 

outcomes of experimental simulations; Findings and

https://multiresearchjournal.theviews.in/
https://multiresearchjournal.theviews.in/


International Journal of Advance Research in Multidisciplinary 

519 https://multiresearchjournal.theviews.in  

Discussion interpret these results in the context of practical 

epidemic management; and the Conclusion summarises the 

key contributions and future research directions. 

 

Literature Review 

The evolution of epidemic forecasting has witnessed 

significant strides in both predictive modelling and data-

driven decision-making. In recent years, research has 

increasingly focused on leveraging real-time data and 

advanced computational techniques to enhance preparedness 

and response. This literature review discusses the role of 

real-time data in epidemic prediction, the application of AI 

techniques in forecasting, and the contribution of business 

analytics to operational decision support. 

 

Real-Time Data Streams in Epidemic Monitoring 

The emergence of various data streams has revolutionised 

public health surveillance. Traditional data sources, such as 

hospital records and laboratory test results, are now 

complemented by real-time data from environmental 

sensors, mobile devices, and social media platforms. For 

instance, studies by Paul and Dredze (2011) [3] demonstrated 

how Twitter data can capture public sentiment and early 

indicators of influenza trends, while others have utilised 

mobility data to predict the spatial spread of diseases 

(Wesolowski et al., 2012) [4]. The ability to integrate and 

analyse these diverse data sources in real time has become a 

crucial component of modern epidemic preparedness. 

 

AI Techniques for Epidemic Forecasting 

Artificial intelligence has emerged as a powerful tool for 

predicting epidemic trends. Early applications of AI in 

public health focused on classical statistical methods; 

however, machine learning models have since taken centre 

stage. Models such as Random Forests (Breiman, 2001) [1], 

Support Vector Machines (Cortes & Vapnik, 1995) [2], 

Gradient Boosting Machines, and deep learning 

architectures like Long Short-Term Memory (LSTM) 

networks have shown considerable promise in modelling 

complex disease dynamics. Notably, deep learning methods 

can capture temporal dependencies, making them well-

suited for time-series forecasting in epidemic scenarios 

(Zhang et al., 2018) [5]. Despite their high accuracy, the 

opacity of many AI models has led to calls for increased 

explainability to bolster trust among health practitioners and 

policymakers. 

 

Business Analytics in Public Health 

Business analytics (BA) techniques offer a complementary 

approach to AI by transforming raw predictive outputs into 

actionable insights. BA tools have been widely used in 

resource optimisation, cost–benefit analysis, and strategic 

planning across various industries. In public health, BA has 

facilitated decisions ranging from hospital bed management 

(Kumar & Singh, 2017) [7] to evaluating the economic 

impacts of intervention strategies (Kaplan, 2016) [6]. The 

integration of BA into epidemic forecasting models can help 

bridge the gap between technical predictions and real-world 

decision-making, ensuring that forecasts translate into 

effective public health actions. 

Integration of Real-Time Data, AI, and BA 

Several studies have begun exploring the integration of real-

time data with AI and BA to enhance epidemic 

preparedness. For example, Chen et al. (2018) [8] proposed a 

framework that incorporates machine learning with 

simulation models to predict outbreak scenarios. Similarly, 

Wang et al. (2017) [9] developed a system that combines 

mobility data with predictive analytics to inform resource 

allocation. However, many of these approaches remain 

fragmented, lacking a unified framework that fully exploits 

the potential of real-time data integration, AI forecasting, 

and BA-driven decision support. 

 

Research Gaps and Rationale 

While previous research has addressed individual 

components of epidemic preparedness, there remains a 

significant gap in comprehensive models that integrate real-

time data streams with both AI and BA. Moreover, the issue 

of transparency in AI predictions-particularly in high-stakes 

environments such as public health-has not been sufficiently 

addressed. This study seeks to fill these gaps by developing 

an integrated framework that leverages real-time data, 

employs state-of-the-art AI models enhanced with 

explainability tools, and uses BA methods to generate 

practical, actionable insights. By doing so, the research aims 

to optimise epidemic preparedness and support evidence-

based decision-making in times of crisis. 

 

Materilas and Methods 

This study adopts a mixed-methods approach, combining 

quantitative AI model development with qualitative 

evaluations from public health stakeholders. The 

methodology is structured into four main phases: data 

collection and preprocessing, AI model development, BA 

integration, and model validation. 

 

Data Collection and Preprocessing 

Data Sources 

A diverse range of real-time data sources was employed to 

capture various dimensions of epidemic dynamics. The 

primary datasets include: 

▪ Epidemiological Records: Daily reports on infection 

rates, recovery statistics, and mortality from national 

health agencies. 

▪ Environmental Data: Real-time environmental 

metrics, such as temperature, humidity, and air quality, 

obtained from weather stations and environmental 

monitoring agencies. 

▪ Mobility Data: Aggregated and anonymised data on 

population movement from mobile network operators 

and public transport systems. 

▪ Economic Indicators: Up-to-date financial data 

including unemployment rates, consumer spending, and 

healthcare expenditure from government economic 

databases. 

▪ Social Media Streams: Real-time sentiment analysis 

and trending topics related to health, extracted from 

platforms like Twitter using natural language 

processing (NLP) techniques. 

 

Data Cleaning and Harmonisation 

Due to the heterogeneity of the collected data, a rigorous 

cleaning and harmonisation process was implemented. Key 

steps included: 
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▪ Data Cleaning: Removing duplicate records, handling 

missing values through imputation, and filtering out 

noise from social media data. 

▪ Normalization: Standardising the scale of different 

features to ensure comparability. 

▪ Time Alignment: Synchronising data timestamps 

across different sources to enable accurate temporal 

analysis. 

 

Table 1 summarises the data sources and key features used 

in this study. 

 
Table 1: Summary of Data Sources and Key Features 

 

Data Source Key Features Frequency Remarks 

Epidemiological Records Daily infection counts, recovery, mortality rates Daily Official health agency reports 

Environmental Data Temperature, humidity, air quality indices Hourly/Daily Local weather stations 

Mobility Data Population movement trends, travel patterns Hourly/Daily Aggregated and anonymised 

Economic Indicators Unemployment rates, consumer spending, GDP Daily/Weekly National economic databases 

Social Media Streams Health-related sentiment, trending hashtags Real-time Processed using NLP techniques 

 

AI Model Development 

Model Selection 

Four primary AI models were developed to forecast 

epidemic trends: 

▪ Random Forests: Selected for its robustness and 

ability to handle non-linear relationships. 

▪ Support Vector Machines (SVM): Employed to 

capture complex patterns in high-dimensional data. 

▪ Gradient Boosting Machines: Chosen for their 

iterative refinement and improved accuracy. 

▪ LSTM Networks: Utilised to model temporal 

dependencies inherent in time-series epidemic data. 

 

Model Training and Evaluation 

The training process involved: 

▪ Data Splitting: The cleaned dataset was divided into 

training (70%), validation (15%), and test (15%) sets. 

▪ Feature Selection: Critical features were identified 

using correlation analysis and feature importance 

metrics derived from preliminary model runs. 

▪ Model Tuning: Hyperparameters were optimised using 

grid search and cross-validation techniques. 

▪ Performance Metrics: Model performance was 

evaluated using precision, recall, F1-score, and mean 

squared error (MSE) where applicable. 

 

Enhancing Model Transparency 

To mitigate the “black box” nature of AI models, 

explainability techniques were integrated: 

▪ SHAP (SHapley Additive exPlanations): Used to 

quantify the contribution of each feature across the 

model’s predictions. 

▪ LIME (Local Interpretable Model-agnostic 

Explanations): Applied to provide localised 

explanations for individual predictions. 

▪ Decision Tree Approximation: A simplified decision 

tree was constructed to validate the outputs of more 

complex models. 

 

Business Analytics Integration 

Decision-Support Tools 

The BA component translates model predictions into 

strategic insights by incorporating the following techniques: 

▪ Regression Analysis: Used to quantify the 

relationships between predictive variables and outbreak 

severity. 

▪ Monte Carlo Simulations: Conducted to assess 

uncertainty and forecast different epidemic scenarios 

under variable conditions. 

▪ Linear Programming: Employed to optimise resource 

allocation, such as the distribution of medical supplies 

and hospital capacity planning. 

 

Integration Process 

The AI model outputs feed into the BA layer, which then 

generates actionable insights. For instance, predictions of 

rising infection rates trigger simulations that assess the 

impact of various intervention strategies (e.g., school 

closures, lockdowns). These simulations help public health 

officials understand the potential economic and operational 

outcomes of their decisions. 

 

Model Validation and Stakeholder Engagement 

Validation was achieved through a combination of 

quantitative analysis and qualitative feedback: 

▪ Quantitative Validation: Model performance was 

assessed against historical epidemic data, and statistical 

analyses were performed to ensure robustness. 

▪ Qualitative Evaluation: Public health stakeholders 

were invited to participate in workshops and interviews, 

during which the model’s outputs and BA simulations 

were reviewed. Feedback was used to iteratively refine 

the system and enhance its usability. 

 

Results and Analysis 

This section presents the outcomes of the integrated 

framework, summarising both the predictive performance of 

the AI models and the insights derived from BA 

simulations. 

 

AI Model Performance 

The performance of each AI model was measured using 

standard metrics. The following table (Table 2) summarises 

the results from the cross-validation process. 

 
Table 2: Performance Metrics of AI Models 

 

Model 
Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Mean Squared 

Error (MSE) 

Random Forest 87 84 85.5 0.043 

Support Vector 

Machine 
84 82 83 0.048 

Gradient Boosting 89 87 88 0.039 

LSTM 86 85 85.5 0.041 
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Among the models tested, the Gradient Boosting Machine 

demonstrated the highest overall performance with an F1-

score of 88% and the lowest MSE. Nonetheless, the LSTM 

model was particularly adept at capturing temporal trends, 

which is crucial for forecasting the evolution of epidemics. 

 

Impact of Explainability Tools 

To enhance transparency, SHAP and LIME were applied to 

the Gradient Boosting and LSTM models. The SHAP 

summary plot indicated that variables such as mobility data, 

temperature fluctuations, and social media sentiment were 

the most influential predictors. LIME explanations for 

specific prediction cases helped elucidate how individual 

data points contributed to forecast outcomes, thereby 

fostering greater trust among stakeholders. 

 

Business Analytics Simulations 

BA simulations were conducted to evaluate the effects of 

various intervention strategies. Three scenarios were 

simulated: 

▪ Scenario A: Baseline (No Intervention): This scenario 

assumed the absence of any intervention measures, 

leading to a rapid escalation in infection rates. 

▪ Scenario B: Moderate Intervention: This scenario 

incorporated moderate measures such as social 

distancing and partial lockdowns. 

▪ Scenario C: Aggressive Intervention: In this scenario, 

strict lockdowns and comprehensive resource 

reallocation strategies were implemented. 

 
Table 3: BA Simulation Outcomes Under Different Scenarios 

 

Scenario 

Peak 

Infection 

Rate (%) 

Economic 

Impact (£ 

million) 

Resource 

Optimisation 

Score 

No Intervention 48 820 0.42 

Moderate Intervention 32 540 0.67 

Aggressive Intervention 18 360 0.82 

 

The simulation outcomes reveal that aggressive intervention 

measures can significantly reduce peak infection rates and 

associated economic impacts, while simultaneously 

improving the efficiency of resource allocation. 

 

Statistical Analysis 

A correlation analysis was conducted to assess the 

relationships among key variables. Notable findings include: 

▪ Mobility Data vs. Infection Rate: A strong positive 

correlation (r = 0.78) indicates that increased population 

movement is associated with higher infection rates. 

▪ Environmental Metrics vs. Outbreak Severity: 

Moderate correlations were observed, with humidity 

showing a negative correlation (r = -0.63) and 

temperature a positive correlation (r = 0.55) with 

infection rates. 

▪ Economic Indicators vs. Intervention Effectiveness: 

A negative correlation (r = -0.68) between economic 

downturns and the efficiency of intervention measures 

was found, underscoring the importance of BA in 

balancing health and economic outcomes. 

 

Qualitative Feedback 

Stakeholder workshops provided valuable insights into the 

model’s practical applications. Key feedback included: 

▪ Clarity of Explanations: Stakeholders appreciated the 

transparency afforded by the SHAP and LIME outputs, 

which helped them understand the rationale behind 

predictions. 

▪ Actionability of BA Insights: Decision-makers found 

the BA simulation results particularly useful in 

planning resource allocation and evaluating the cost–

benefit aspects of different intervention strategies. 

▪ Adaptability and Scalability: The layered framework 

was noted for its potential to be customised for different 

regions and adapted to various epidemic scenarios. 

 

Findings and Discussion 

The integrated framework combining real-time data, AI 

forecasting, and BA-driven decision support offers several 

important findings that have significant implications for 

epidemic preparedness. 

 

Key Findings 

1. Enhanced Predictive Accuracy: The combined use of 

multiple AI models, particularly the Gradient Boosting 

Machine and LSTM networks, resulted in high 

predictive accuracy. The integration of real-time data 

streams allowed the models to adapt quickly to 

emerging trends, thereby providing timely warnings of 

potential outbreaks. 

2. Improved Transparency: The deployment of 

explainability tools, such as SHAP and LIME, 

substantially reduced the ‘black box’ nature of AI 

models. Stakeholders were better able to understand 

which factors contributed most to predictions, which in 

turn increased their confidence in the model outputs. 

3. Actionable Decision Support: The incorporation of 

BA techniques enabled the translation of raw 

predictions into strategic insights. Simulations based on 

various intervention scenarios provided clear guidance 

on resource optimisation, cost–benefit trade-offs, and 

the overall impact of different public health measures. 

4. Interdisciplinary Integration: The study demonstrates 

the benefits of an interdisciplinary approach that 

merges technical forecasting with practical business 

analytics. This integration not only enhances predictive 

performance but also ensures that model outputs are 

operationally relevant and aligned with policy 

objectives. 

 

Discussion of Challenges and Limitations 

While the proposed framework shows promise, several 

challenges were identified: 

▪ Data Integration: Integrating diverse real-time data 

streams remains a significant challenge. Variability in 

data quality and inconsistencies in data formats require 

ongoing efforts in data harmonisation and cleaning. 

▪ Model Complexity vs. Interpretability: Although 

advanced AI models provide high accuracy, they often 

come at the cost of interpretability. While explainability 

tools mitigate this issue, further research is needed to 

balance model complexity with user-friendly 

transparency. 

▪ Ethical Considerations: The use of real-time data, 

especially from social media and mobility sources, 
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raises privacy concerns. Strict data governance 

protocols and anonymisation techniques are essential to 

ensure ethical data usage. 

▪ Scalability: Implementing the integrated framework on 

a global scale necessitates substantial computational 

resources and robust infrastructure, which may not be 

readily available in all settings. 

 

Implications for Policy and Practice 

The findings of this study have several practical 

implications for public health policy: 

▪ Evidence-Based Interventions: The framework 

supports the development of evidence-based 

interventions by providing real-time insights into 

epidemic trends and resource needs. This can help 

policymakers design targeted measures that minimise 

both health and economic impacts. 

▪ Optimised Resource Allocation: By incorporating BA 

techniques, the model enables decision-makers to 

evaluate various intervention scenarios and optimise the 

allocation of limited resources such as hospital beds, 

medical supplies, and personnel. 

▪ Real-Time Decision-Making: The integration of real-

time data streams ensures that the system remains 

current and responsive to rapidly changing epidemic 

conditions. This capacity for real-time decision-making 

is critical for mitigating the spread of infectious 

diseases. 

▪ Transparency and Trust: Enhancing the transparency 

of AI models through explainability tools fosters trust 

among public health stakeholders. Transparent models 

are more likely to be adopted and acted upon, thereby 

improving the overall efficacy of epidemic 

preparedness strategies. 

 

Comparison with Existing Studies 

When compared to previous studies, the integrated approach 

presented in this paper offers several distinct advantages: 

▪ Holistic Integration: Unlike studies that focus solely 

on AI forecasting or BA-driven decision support, this 

framework combines both approaches along with real-

time data integration, providing a more comprehensive 

solution for epidemic preparedness. 

▪ Emphasis on Explainability: While many existing 

models deliver high predictive accuracy, they often lack 

transparency. By incorporating explainability 

techniques, this framework addresses a critical gap, 

making the outputs more accessible to non-technical 

stakeholders. 

▪ Operational Relevance: The inclusion of BA 

simulations ensures that the model’s predictions are not 

only accurate but also actionable. This practical focus 

on resource optimisation and economic evaluation 

differentiates the proposed approach from other, more 

theoretical models. 

 

Conclusion 

This paper has presented an integrated framework that 

combines real-time data streams, AI-driven predictive 

models, and business analytics to enhance epidemic 

preparedness. The framework has been designed to address 

the dual challenges of accurate epidemic forecasting and the 

need for transparent, actionable decision support. 

 

Key contributions of this study include 

▪ Integration of Diverse Data Sources: By 

incorporating real-time epidemiological, environmental, 

mobility, economic, and social media data, the 

framework provides a comprehensive view of epidemic 

dynamics. 

▪ High Predictive Performance: The use of advanced 

AI models such as Gradient Boosting Machines and 

LSTM networks, along with rigorous model tuning, 

resulted in high predictive accuracy. The integration of 

explainability techniques further improved transparency 

and stakeholder trust. 

▪ Actionable Business Analytics: The BA layer 

translates raw model outputs into strategic insights, 

enabling the simulation of various intervention 

scenarios and optimising resource allocation. This 

operational focus supports evidence-based decision-

making in public health emergencies. 

▪ Practical Implications for Policy: The framework 

demonstrates significant potential for informing real-

world interventions, offering a scalable solution that 

can be adapted to different regions and epidemic 

contexts. By providing timely warnings and actionable 

insights, the system can help mitigate the health and 

economic impacts of future outbreaks. 

 

While the results are promising, further work is needed to 

address challenges such as data integration, scalability, and 

ethical considerations. Future research should focus on 

developing automated data pipelines, enhancing model 

interpretability, and expanding the framework to incorporate 

additional data sources, such as telemedicine and genomic 

surveillance. 

In conclusion, the integration of real-time data streams with 

AI-driven business analytics represents a critical 

advancement in epidemic preparedness. By enabling rapid, 

evidence-based responses and optimising resource 

allocation, this approach has the potential to significantly 

enhance public health resilience in the face of emerging 

infectious diseases. 
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