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Abstract

It starts with the Semidirect Product Key Exchange (SDPKE), which is an extension of the Diffie-Hellman Key Exchange, and uses the
difficulty of the Semidirect Computational Diffie-Hellman Problem to analyze various cryptosystems. We also think of the semidirect
discrete logarithm problem as a cryptographic group action and classify its quantum complexity as a result. This problem has been
overlooked despite its relevance. In particular, our protocol may be based on any non-commutative group. There are some superficial
parallels between our method and the standard Diffie-Hellman protocol, but we believe our technique is preferable due to many important

changes.
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Introduction

When p is prime and g is primitive mod p, the original and
simplest way to implement the protocol is to utilize the
multiplicative group of integers modulo p. A protocol
description that is more generic makes use of any finite
cyclic group. An ongoing effort is being made to identify
alternative platforms that might provide a more efficient
Diffie-Hellman or comparable key exchange, especially
with smaller public/private keys. Several promising new
avenues have emerged as a result of this investigation; one
of them is elliptic curve cryptography. We also direct the
reader to for an overview of suggested non-abelian (= non-
commutative) group based cryptographic primitives. Our
aim in this study is to propose a novel key exchange
protocol that relies on the extension of a (semi)group via
automorphisms, not to conduct a review of these previous
attempts.

Any group, and especially any non-commutative group, may
serve as the basis for our protocol. Although it has certain
outward similarities with the conventional Diffie-Hellman
protocol, our approach has a number of key differences that
we think make it superior. Specifically, unlike the standard
Diffie-Hellman protocol, the parties here only broadcast a
portion of the result when computing the big power of a
public element. A more complicated suggestion for a key
agreement based on the semidirect product of two monoids
and an alternative, rather different, cryptosystem based on

https://multiresearchjournal.theviews.in

the semidirect product of two groups are also mentioned.
We strongly disagree with both of these suggestions. Lastly,
it is worth mentioning that other algebraic systems, such as
associative rings or Lie rings, may easily adopt the
fundamental architecture (semidirect product) used in this
study with minor adjustments. From there, key exchange
protocols comparable to ours can be constructed.

A group is defined by the following four axioms: closure,
associativity, identity, and inverse. Any two items in a
closed group may be binary-operated upon to produce
another element of the same type. Any three variables a, b,
and ¢ may be multiplied by any other to get a * (b * c), since
the order of operations is unimportant in associativity
groups. The unique element in the group, frequently
symbolized by the letter e, is verified by the fact that for any
element an in the group, the equation e * a =a * e = a hold.
You can't have an element an in a group without also having
an element a”-1, such that the product of a and a”-1 is equal
to e. The inverse property describes this. A few examples of
groups are the additive group of integers (represented by (Z,
+)), the multiplicative group of non-zero rational numbers
(Q*, x), and the group of symmetries of a regular polygon
(which includes all the polygon's rotations and reflections
with composition as the binary operation).

Among the many significant concepts in group theory are
subgroups, homomorphisms, isomorphisms, and costs. Any
set of elements that, when combined using the same binary
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operation, also constitute a group is called a subgroup. To
be considered a homomorphism, a function must preserve
the binary operation between the two groups, meaning that
for every element a and element b in the group, f(a * b) =
fla) * f(b). Bijective homomorphisms include
isomorphisms, which are one-to-one and onto.
Transforming a subgroup by one of the members of the
group forms a coset, which is a subset of the group. An
important result in group theory, Lagrange's theorem states
that the order of a subgroup divides the order of the group.
The order of a group is proportional to the number of its
members, whereas the order of an element is the smallest
positive integer n that makes a”n = e, with the identity
element of the group being e.

Literature Review

Deepa Jaiswal (2024) [l The use of group theory offers a
solid basis for the development of cryptographic systems
that are both effective and secure. Its use encompasses a
variety of public-key cryptography methods, such as the
widely employed RSA and ECC algorithms, in addition to
the more recent developments in post-quantum
cryptography. A group is a reasonably common algebraic
object, and the majority of cryptographic algorithms make
use of groups in some form or another. Finite cyclic groups
are used in particular for the purpose of the Diffie—Hellman
key exchange. Therefore, the term "group-based encryption"
is most often used to refer to cryptographic techniques that
make use of infinite non-abelian groups.

Alex Musa and Udoka Otobong G (2024) [Pl In this
research, a resilient digital signature technique that is based
on lattices and makes use of matrix groups to improve post-
quantum security is presented. Our system is able to show
both theoretical and practical security since it is constructed
on the difficulty of lattice problems such as the Shortest
Vector Problem (SVP) and Learning with Errors (LWE), in
addition to the complexity of the Matrix Group Conjugacy
Problem. In order to comprehensively assess performance,
we meticulously develop the mathematical underpinnings of
the (MGCP), conduct an analysis of the computational
complexity, and give numerical simulations. The use of this
method brings about a novel combination of lattice and
matrix group theory, which enables the development of
post-quantum cryptography with fresh perspectives and
opportunities.

Emerencia, C. (2024) Bl. The fact that there is no known
classical efficient method that can convert huge numbers
into primes ensures that modern cryptosystems that are used
on a daily basis, such as RSA, continue to be secure.
However, the security of current cryptosystems is placed in
jeopardy by the imminent arrival of quantum computers,
which are predicted to become available shortly. To provide
a more tangible example, Shor's quantum method, for
instance, is capable of solving the integer factorization
problem in very short polynomial time. I explored the
group-theoretical generalization of integer factorization,
which is known as the Hidden Subgroup issue, as part of my
PhD thesis. I also studied the state-of-the-art of the many
approaches and algorithms that have been discovered to
address this issue in a variety of situations. For instance, this
issue has previously been addressed in an effective manner
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for the scenario in which the associated group G is abelian,
also known as Hamiltonian.

Vasco, Marfa et al. (2024) M. A (relatively) uncharted
territory in the theory of finite simple groups might provide
intriguing computing challenges and modelling tools
applicable to cryptography. We give the necessary
definitions to make the material comprehensible for both
group theorists and cryptographers, with the aim of
encouraging additional communication between these two
(non-disjoint) groups, and we examine various scenarios
where finite non-abelian simple groups are obviously
fundamental in cryptography. Specifically, we examine
constructs that stem from different group-theoretic
factorization issues, describe completely homomorphic
encryption using simple groups, and survey group
theoretical hash functions. Also, in this context, the Hidden
Subgroup Problem is briefly examined.

Dr. Gyanvendra, Pratap et al. (2024) I°]. To better understand
the border between a home system and one that does not, we
provide an analysis of several mathematical ideas in this
study. The mysterious algebra of organic device biology and
group cognition are both uncovered by our work. In this
paper, we argue that, in terms of ordering, it is often feasible
to use the perturbation principle to force a fast examination
of the changes in the near 64-time area of the genome.

Research Methodology

The numerous cases of the so-called Semidirect Product
Key Exchange, also known as SDPKE, are discussed in this
aforementioned section. To be more specific, we conduct an
analysis of the difficulty of the underlying security problem
for a wide range of different mathematical objects,
providing a comprehensive survey of the current state of the
art.

First, for obvious reasons, it is crucial to build a landscape
of post-quantum methods based on a wide range of
computational issues for security concerns. For example,
solving one class of computational problems shouldn't mean
that all postquantum cryptography is broken.

Second, noninteractive key exchanges, which provide the
following general benefit, are not a part of the NIST
standardization process.

Data Analysis

This section addresses the several occurrences of the
Semidirect Product Key Exchange, or SDPKE. We
specifically examine the complexity of the foundational
security issue across various mathematical constructs,
providing an extensive review of the current advancements;
we also critique existing literature in this domain and
address certain technical deficiencies that have been
implicitly overlooked by these contributions.

The Semidirect Product

Definition 1: Consider the endomorphism semigroup of a
finite semigroup G, denoted as End (G). G »x End(G), which
is the semidirect product of G by End(G), is composed of
the ordered pairings G x End (G) that are multiplication-
equipped, identified by

(g.9)(hy) = (Y(gh V)
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where W@ refers to the function that is obtained by
applying ¢ first, and then y after that.

If G is in fact a semigroup, which means that at least one of
its elements does not have an inverse, then the structure that
is produced by G x End(G) could be considered a
semigroup in and of itself. On the other hand, if we take into
account the possibility of invertibility, we do in fact obtain a
group. The following is a typical model that has been
slightly modified to accommodate our particular notation.

Theorem 1: Consider G as a semigroup that is

finitee I = G X End(G) has the property of being a
semigroup, and if G is a complete group, then

G X Aut(G) is also a full group.
Proof. (1, id.) This is the identity. To demonstrate

associativity, let (2. ¢), (q,¥), (r, @) pe components of
H, therefore after performing the computations, one has

((p,#) (@, ¥, w) = W(P)q,ve)(r,w)
(wyp(plw(q)r, @)

(. @) (w (@), @)

(., @) ((q, ) (r, )

In conclusion, if G is a complete group, for any

(g,¢) € G > Aut(G) Thereisa

(&) (g e ) =(o" (g o (g ¢) = (1,id),

And with that, we come to an end.

In the general situation, the setup of a finite group and its
automorphism group, as well as the setup of a finite
semigroup and its endomorphism semigroup, are used more
or less interchangeably in the exposition for this chapter. As
we progress through this discussion, we will examine
certain instances of groups and semigroups in which
invertibility is either expressly required or ignored;
nonetheless, these instances ought to be obvious from the
context. In point of fact, we favor the definitions that are
expressed in terms of a finite semigroup and the
endomorphism semigroup of that semigroup in the general
situation.

SDPKE

We will examine the impact of allowing for invertibility in
greater detail in the following section, which comes after
this one. For the time being, we are not especially interested
with the semidirect product itself; rather, we are more
concerned with the quantity that it gives rise to, which is as
follows:

Definition 2: Let G be a finite semigroup, and let End(G) be
the semigroup that represents its endomorphism. Every pair

of (9,®) € G X End(G) causes the function to occur

Sg.p: N =G, in which for each * € N,sg¢ () as the
component of G that is specified in such a way that
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(& ¢)" = (sgp(x), ¢")

Checking that is not a tough task at all that
— AX—1
Sg.¢ (x)=¢ (g) - ¢(g)g. Nevertheless,  the

following is the most important understanding that
contributes to the substantial amount of interest in

cryptography:

g ¢

g P) (g ¢)"
53,¢(I}J¢I){5g,dﬁ{y)xfpy}
¢ (sg(x)) Sx,dﬁ{}f']:fp'rw)

(sgp(x +v). ")

x

(
(
(
(

7 = y 7
It is consequent that Sgp(x+ ) =¢ (89'¢ (x)) Sg.6 ()
An argument that is completely symmetrical demonstrates

) = ¥ ; .
that Sge(xty)=¢ (89'¢0)) Sg.6 (0); To put it another

way, allow Sg.¢ (), We are able to compute Sg-qb(x +y)
to the extent that one is exclusively aware of y, and vice
versa. The significance of this realization is so great that we
have decided to encapsulate it in a theorem.

Theorem 2: Let G represent a semigroup, and let End (G)
be its endomorphism  semigroup. For  every
(9.¢) € 6 X End(G) and x,y € N Thereisa

O (5¢,0(Y))54,0(x) = Sgp(x +y) = P¥(54,¢(x))3g.0(y)

Indeed, it is specifically these equalities that make it
possible to define SDPK.

Definition 3: (Semidirect Product Key Exchange). Let's say
two parties Alice and Bob concur on a finite semigroup G,
End(G), which is its endomorphism, and a set

(g,¢) € G < End(G). et
N = ‘{Sg-fb (i)}:i < N‘ N is finite, as we know from

each value of 59.¢ (0 exists within G, which is a finite
entity in and of itself. In the following manner, the two
parties are able to arrive at a shared group element:

= In order to calculate A= Sg.¢ (x ), Alice selects an
integer x at random from the set of numbers

{1- v N } This is the value that she sends to Bob.

* In order to calculate B = s44 (}’), Bob selects an
integer y at random from the set of numbers

{1, ..., N} This is the value that she sends to Alice.
=  As soon as Alice is in possession of Bob's value B, she
employs her own integer x to compute the equation

Ky = ¢*(B)sgq(x),
= In the same manner, Bob utilizes his integer y to

compute the equation Kp = ¢¥ (A)Sg-fi’ (}’)

Remark. Our presentation of SDPKE makes use of a
notation that is not conventional, and beyond a doubt, none
of the provided examples of the scheme make use of this
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notation. The notation used in the cryptanalytic work is its
closest relative. In this notation, ai is defined as our

Sg.¢ (E) Despite the fact that this work does not explore
the finite quantity N that denotes the size of this set, the
similarity is possibly one of the few works in the literature
that takes into consideration the set of all possible exchange
values.

Semidirect Product Key Exchange Key Recovery

We are going to look at some of the techniques that were
described above in order to solve SCDH in a variety of
different groups throughout the rest of this chapter. Our
objective is to standardize the many different methods, as
was said in the introduction; however, before we proceed
with this, let us have a look at the list of platforms that are
currently being suggested.

SDPKE Platforms

Following that, we will list the platforms that have been
suggested in chronological order. Furthermore, given that a
new suggestion of platform is directly a reaction to some
cryptanalytic notion on a prior platform, this will also serve
as the incentive for picking semigroups that seem to be
fairly random as a platform according to the literature.

The first semigroup that was suggested for use with SDPKE
was included in the first proposal for the key exchange.

Semigroup platform created by the authors M3(Z; |A5 D
matrix multiplication, and a base pair automorphism is
described as conjugation by a semigroup matrix that can be

turned upside down. This, Z;|As| represents the group ring
that is made out by formal sums that make up the kind

Y a,8 ag€Z;

geAs

A concept of addition and multiplication may be defined on
this ring; when we are endowed with these operations, we

have a ring that is simultaneously an |As] dimensions over

Z.

On Finite Group Representation Theory

The examination of maps P ‘ G — GL(V) The theory
of representations for groups is defined for each given group
G and vector space V. A pair (p, V) is referred to be a

representation over F if the vector space is over a field F.
After establishing a foundation, it is always possible to see
GL(V) as a matrix group for finite-dimensional vector
spaces V, as every finite group allows a finite-dimensional

description (as shown by Theorem 4.12). GL(k,TF), where
k is the size of V and F is the field underneath it. r = p is a
map that meets the conditions of Theorem 4.11 when p is
injective. This kind of depiction is called accurate:

GL(k,F) Components may be conceptualized as k-
dimensional vectors endowed with the conventional
framework of matrix multiplication. In summary, any
faithful, finite-dimensional representation (p, V) of a group
G entails that p is an injective homomorphism from G into a
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m?-dimensional algebra, where m represents the dimension
of V over a field F.

The examination of the effectiveness of the dimension
assault concerning a platform G is precisely the analysis of
the dimension of accurate representations of G. Let us
summarize the preceding debate by documenting the below
outcome.

MAKE

The Dimension Attack

The natural occurring group as the additive group of an
algebra is the subject of debate. As we observed, the
dimension assault strategy would have a hard time adapting
to such a platform. Keeping this in mind, the 'MAKE'
SDPKE method is proposed for a certain prime p and the

platform group M (EP) is added. The failure of the
dimension attack has been shown; now let us see a
successful implementation of the telescoping assault.

Telescoping Attack
Keep in mind that the writers propose the base pair (M, ¢),
where M might be any M3 (Zy) matrix, and

¢(g9) = Puyn, = HIMH; ejieg on selecting appropriate

Hy,H, € Ms(Z

auxiliary matrices ») Due to this, we're

experiencing

x—1
smg(x) = ) HiMHj
i=0

Accordingly, a base pair is the pertinent data for a SCDH

instance with regard to this platform option. M. %#,5.) and

two M; (ZP)
x— i i oyl i i

A= Y7 (HMH;) and B := Y/ (H{MHj;). Recovering

r+y—1 i i
the value is the job that we have. Yio (HMH;)
Recall the fact that we are able to compute employing this
publicly available data.

M + ¢, (A) — A = ¢, iy, (M)

There is still the need of describing a technique of

Xty —1egri i X
calculation E:':n (H1MH2 )with access to ¢H1-H?' We
provide a proof of this issue that uses this consequence of
the Cayley-Hamilton theorem:

elements

Conclusion

A novel key exchange mechanism based on automorphism
extension of a (semi)group has been introduced and many
concrete examples of this concept have been detailed. Any
group, and especially any noncommutative group, may
serve as the basis for our protocol. An extension of the
Diffie-Hellman Key Exchange, the Semidirect Product Key
Exchange (SDPKE) analyses the difficulty of the Semidirect
Computational Diffie-Hellman Problem to test various
cryptosystems. The first key exchange proposal included the
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fir:
be

st semigroup that was proposed for use with SDPKE. To
more precise, we explore the state of the art in a thorough

manner and analyze the severity of the underlying security
challenge for various mathematical objects.
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