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Abstract 

Machine learning algorithms may be trained on decentralized data using Federated Learning (FL) when sharing raw data is not possible 

owing to privacy concerns. One example of this kind of data is EHRs, or electronic health records, which store private information about 

patients. Instead of sharing sensitive data, FL trains models locally and then aggregate their parameters on a central server. An effective 

method for training Machine Learning (ML) algorithms on distributed datasets when data owners are governed by restrictions that limit the 

sharing of raw data is Federated Learning (FL). There is less need to communicate raw data with people outside the premises with this 

strategy, which involves local training and model aggregation to a central server. Nevertheless, FL brings up valid issues around privacy. For 

that reason, we need more privacy safeguards. One state-of-the-art privacy technique is the differential privacy (DP) approach, which 

involves adding an extra layer of privacy by perturbing the local models before transmission. But this method could change the framework's 

usefulness. In order to strike a fair balance between privacy and usefulness, we employ a private method to clean raw data by combining DP 

noise with a top-down taxonomy tree. To train local models that may be shared in the FL architecture, the generalized data is utilized in 

conjunction with DP noise. The suggested architecture improves functionality while keeping the privacy budget low. 
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1. Introduction 

The latest developments in Generative AI are driven by 

Machine Learning (ML) methods, which are the backbone 

of descriptive, predictive, and prescriptive analysis. ML-

based systems include recommendation systems, prediction 

engines, sentiment analysis services, object detection, 

anomaly or fraud detection, and others. The financial, 

pharmaceutical, and medical science industries aren't the 

only ones that can benefit. In fields like natural language 

processing and voice recognition, ML methods like Deep 

Neural Networks (DNN) have successfully tackled difficult 

problems. On the other hand, ML is used in the financial 

sector for things like client retention programs, algorithmic 

trading, and financial monitoring [11].  

Generative AI, which depends on fundamental models-pre-

trained models learned on massive quantities of data-and 

collaborative machine learning across domains are two 

examples of the more complex processes made possible by 

advances in pattern recognition and learning from single 

data sources. These advancements have completely changed 

the way business database insights are generated [12]. By 

ensuring that data is coming from several sources to cover 

diversity, volume, and dispersion, Machine Learning 

insights may be made exact, trustworthy, and efficient. 

When presented with unexpected data, machine learning 

models often underperform due to a lack of different 

training data sources and various perspectives. It must be 

noted that the data used to derive these conclusions is often 

limited to data owned by the company [14].  

Consequently, the accuracy, efficacy, and consistency of 

these models may be compromised anytime they are used in 

different organizational settings. By embracing a free data 

exchange between many stakeholders, organizations may 

contribute to a varied dataset, increase the effectiveness of 

machine learning conclusions, and overcome these 

constraints. Improved accuracy and reliability in machine 

learning are outcomes of the expanded dataset's capacity to 

train models on a wider variety of data points. When data is 

shared, trends and patterns may be seen that would not be 

apparent when it is analyzed separately. By integrating data 
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from several sources, organizations may uncover hidden 

insights and get a better understanding of intricate 

situations. When users share their data, it makes machine 

learning processes more open and accountable. Multiple 

stakeholders may access the created data and insights, which 

makes it simpler to check and evaluate the outcomes. The 

trustworthiness and dependability of machine learning 

insights are guaranteed by this openness, which in turn 

inspires confidence among stakeholders. 

 

2. Literature Review 

At present, the privacy preservation plays a vital role in data 

mining. Baozhen Lee et al. (2014) coordinated the process 

of protecting individuals' private while also handling their 

personal information, which necessitates a paradigm change 

in thinking about both publicity and privacy [9]. Along with 

measuring privacy using conventional standards, we provide 

a constraint on the nonlinear distortion's forecast accuracy. 

The main idea behind this method is that the user should be 

able to control the amount of privacy by adjusting the 

nonlinearity [15]. As an additional layer of defense against 

unauthorized access to critical database information, there is 

a tree-based approach known as a rapid perturbation 

algorithm [2].  

According to Dinusha Vatsalan and Peter Christen (2016), 

privacy preservation approaches have several practical 

applications. suggested a privacy-preserving architecture 

that improves masking and matches patients with 

comparable medical histories. It finds the best values for 

data-dependent parameters and uses bloom filter encodings 

to conceal data. Using bloom filters, it conceals both 

numerical and string data. A large database with many 

attributes will increase the computational complexity of the 

suggested system [1]. Using these data, we may determine 

how comparable the attribute values are. Performance, data 

usefulness, and uncertainty or resistance to data mining 

algorithms are three ways to judge the success of privacy 

preservation algorithms. After learning about data breaches, 

users are understandably wary about disclosing any 

personally identifiable information. 

A methodology was suggested by Samanthula et al. (2015) 

that conceals data access patterns, safeguards data 

confidentiality, and preserves the privacy of user input 

queries. That is, the semi-honest model is used to create the 

safe k-NN classifier over encrypted data. One method of 

protecting personal information is data concealing. The 

irretrievable PPDM issue is solved using the reversible 

privacy preserving data mining technique. The method of 

reversible data concealing is used [5]. To accomplish privacy 

preservation and knowledge verification, the privacy 

difference expansion (PDE) approach perturbs the original 

data and embeds it with a fragile watermark. It can also get 

the initial data back. Probabilistic information loss, privacy 

disclosure concerns, and classification accuracy are the 

metrics used to evaluate PDE performance [2].  

Chen Yi Lin (2016) developed the RDT algorithm, which 

can both destroy and recover data. If you want to prevent 

data mining and knowledge reservation from revealing 

sensitive information, this algorithm is for you. To improve 

the adaptability of privacy-preserving measures, it makes 

use of a weighting system that can be adjusted and the level 

of data disruption [3]. To identify tampering with the 

disturbed data, a watermark might be included in the 

original data. Data loss and privacy breach are both 

mitigated by the suggested approach.  

Sushmita Ruj & Amiya Nayak (2023), developed a 

distributed security architecture for smart grids that can 

aggregate data and restrict who may access it. Data 

aggregation safeguards consumers' personal information. 

Networks in the house, in buildings, and in nearby areas all 

work together to aggregate data. Cryptographic keys are 

distributed via a network of key distribution centers (KDCs) 
[6]. Use of attribute-based encryption (ABE) is key to the 

suggested access control method; this technology allows for 

limited access to consumer data held in data repositories and 

used by various smart grid users. The solution is resilient 

since the access control mechanism is distributed and does 

not depend on a single KDC to distribute the keys. Ensuring 

privacy while aggregating data and controlling access is the 

primary emphasis of this effort.  

 

3. Materils and Methods 

In this section, proposed methods detailing the privacy-

preserving techniques will be discussed. 

 

3.1 Problem Description 

In this model (Fig. 1), we examine gene data of patients 

with diverse health disorders, such as heart failure, using the 

federated learning framework to discover possible risk 

factors. Due to health data regulatory rules, it is not possible 

to transfer this data across premises in its raw form, 

therefore data is gathered from several sites while keeping 

sufficient privacy. As a result, we construct the model 

locally and then upload it to the main server so it may be 

trained. The suggested method restricts communication with 

the central aggregated server to data pertaining to perturbed 

models [7]. The final model is built and trained by the 

trustworthy aggregator server using the aggregated local 

data. Privacy attacks, such as model inversion or 

reconstruction attacks, may still occur on model data 

communicated in a federated learning system [3, 4, 36]. 

 

 
 

Fig 1: Multiple Data Owners are training a model collaboratively using federated machine learning algorithm providing a privacy guarantee 

over the data 
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Thus, it is necessary to provide an extra degree of privacy. 

By introducing noise into the model data throughout the 

sharing process between sites and aggregator servers, the 

differential privacy algorithm accomplishes the privacy 

mechanism [8].  

If there is a significant quantity of noise introduced to high-

dimensional data with more columns, the accuracy of the 

model may be affected. In order to increase the accuracy of 

the model and minimize the amount of data dimensions, a 

federated correlation-based feature selection is devised to 

obtain a shared list of the features that are used for training. 

One reason people have heart failure is due to transthyretin 

amyloid cardiomyopathy. An ML model is a reliable tool 

for predicting the likelihood of certain health problems. 

Thus, in order to forecast the likelihood of heart failure, our 

federated machine learning model will examine the patient's 

genetic information and determine if a cohort of individuals 

may be at risk of wild-type transthyretin amyloid 

cardiomyopathy, based on established characteristics. The 

dataset is divided into two parts, each including 1713 

samples. In the first part, 855 samples are classified as 

ATTR-CM, or wild-type amyloidogenic TTR 

cardiomyopathy. In the second portion, there are 858 

samples, with 1874 phenotypes (features) per sample. Our 

produced model should be able to use this dataset to foretell 

if the patient will develop heart failure using privacy-

preserving federated learning [9].  

Due to their massive size, electronic health records and 

databases may not be practical when dealing with 

constrained privacy resources. To make the most of the 

limited privacy budget, we reduce the dimensionality by 

using feature selection to eliminate unnecessary columns. 

Finding the columns in the given data with the strongest link 

to the condition is the first step in our feature selection 

process. We use the Laplace Transformation to introduce 

noise into the resulting statistics and Differential Privacy 

(DP) methods to guarantee privacy. The resultant noisy data 

is sent to the aggregator server instead of the raw data. The 

data is then used by the central aggregator server to educate 

a machine learning framework, which acquires a worldwide 

model for predicting the probability of heart failure [1].  

 

3.2 Feature Selection 

Many genes available in a genomic dataset are the first 

essential factor impacting the model’s utility due to 

diversity in the whole dataset. Any machine learning system 

processing such vast data dimension often leads to less 

accuracy because some genes provide no value to the 

analysis. There- fore, proper methodologies for feature 

selection from the whole dataset constantly improve the 

score efficiently. 

While reducing the data dimension, we focus on two things: 

Choosing genes based on their correlation with the disease 

and sending only summarized data as a model to the central 

Server. A correlation coefficient is a numerical measure of 

some type of correlation, meaning a statistical relationship 

between two variables [2].  

 

  
 

Similarly, in our approach, each local server chooses a list 

of a maximum of 200-300 Genes that have the highest 

correlation with the disease as per the above equation to 

build up the local model. Finally, the central Server receives 

and matches each local model’s columns and feeds them to 

the ML framework for training. 

In our approach, reduced dimensions require less privacy 

budget (in terms of ε) while maintaining the model’s utility. 

Within a limited budget, if the number of columns is high, 

the privacy budget will be distributed to each column with 

less amount, resulting in more noise to be added. Therefore, 

more noise can impact the accuracy of the score directly. 

After feature selection in our approach, the data dimension 

reduces, resulting in higher accuracy through less noise 

added [4].  

According to Table 1, if any gene from the whole data set 

contains control value as True, refers to Positive Prediction 

of Heart Failure while False value represents negative 

prediction. We calculate the correlation value for each 

column and define it as (µ, σ) for True prediction label and 

(µ′, σ′) as the False prediction label. Then we select the top 

200-300 columns based on the correlation value [5]. In this 

way, we calculate the feature for each column and generate 

the two rows of data based on the control value as per 

shown in Table 1. Note that these two rows of data do not 

contain the actual raw value, rather the calculated model 

data based on the highest correlation for that column. 

Finally, after noise addition, Table 2 is sent to the model 

manager or central aggregation server with additional layer 

of protection using differential privacy. 

 

3.3 Privacy Mechanism 

Our approach solely depends on the differential privacy 

mechanism to maintain the additional privacy layer of the 

shared model data. In this approach, the noise will be added 

to the model data based on Laplace Mechanism. The 

privacy budget, ε, is varied based on the data dimension to 

achieve the best utility. 

 
Table 1: Column Selection based on highest correlation value 

 

Gene1 Gene2 Gene3 Control Value 

(µ1, σ1) (µ2, σ2) (µ3, σ3) # Have Heart Disease 

(µ′1, σ1′) (µ′2, σ2′) (µ3′, σ3′) # Don’t have heart disease 

 
Table 2: Differential Privacy mechanism applied to the model data 

 

Gene1 Gene2 Gene3 Control Value 

(µ1, σ1) + 

Lap∆f/ε1 

(µ2, σ2) + 

Lap∆f/ε2 

(µ3, σ3) + 

Lap∆f/ε3 

Have Heart 

Disease 

(µ1′, σ1′) + 

Lap∆f/ε1 

(µ′2, σ2′) + 

Lap∆f/ε2 

(µ3′, σ3′) + 

Lap∆f/ε3 

Don’t have heart 

disease 

 

Data size will be reduced by dimension first based on 

feature selection rather than applying noise to the complete 

data sets. Finally, the noise will be added to the summarized 

data, as shown in Table 2. Note that the total privacy budget 

ε is distributed to each column based on the inverse 

correlation value. Therefore, the column with the highest 

correlation value will receive the most privacy budget and 

have less noise to be added [7]. Also, according to the 

composition theorem of the DP mechanism as detailed in 

the Background section, If F1(x) satisfies ε1-differential
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privacy and F2(x) satisfies ε2-differential privacy, then the 

mechanism G(x) = (F1(x), F2(x)) which releases both results 

satisfies ε1 + ε2-differential privacy satisfying the following 

equation: 

 

ε1 + ε2 + ε3 + ... + εn = ε, εi ∝ (Corr (µi, σi))−1 

 

Therefore, the total privacy budget will be equal to the 

summation of distributed budget for each column. In this 

way, the more relevant column with the disease prediction 

will add less noise value, resulting in an improved utility of 

the framework. 

 

3.4 Federated Learning Mechanism 

In our federated framework, after adding the privacy 

mechanism, only model data from each local data owner are 

sent to the aggregator server to train the ML framework. We 

have utilized two ML algorithms for the federated training: 

a) Naive Bayes Classifier and b) Random Forest in a 

federated setting to validate the efficacy of the proposed 

method [9]. 

The data owners remain solely responsible for building their 

local model, while the aggregator server builds the results in 

a collaborative learning setting. The statistics required for 

Random Forest and Naive Bayes, for example, are first 

completed at the data owner’s location and then shared with 

an additional privacy layer (DP) to be robust against further 

model inversion attacks. For Random Forest, after reducing 

the column with the highest correlation values, only the two 

rows with control value True or False is calculated as (µ, σ) 

and (µ′, σ′) respectively. Finally, Table 2 is generated at each 

data owner and sent to the aggregator server after adding the 

noise according to the Laplace mechanism. The same 

approach is applied for Random Forest, except the model is 

built on the Tree from raw data and noise is added 

afterwards. 

 

4. Results 

In this section, the experimental result is described. Since 

the proposed method is a generalized data-sharing 

mechanism for federated ML applications, we experiment 

with different settings as portrayed in Table 3. We utilized 

multiple machines at our lab as server-client settings to 

conduct the experiments. The average latency between the 

servers was minimal [12].  

 

4.1 Experimental Setup 

The experimental data were taken from the iDASH 2021 

competition which tested the proposed solutions with a 

single dataset: IQVIA Inc, for predicting causes of certain 

heart failure. We utilized additional datasets from BC-

TCGA for cancer prediction alongside to compare our 

proposed method: 

 

 
 

Fig 2: Accuracy difference with different privacy budgets and methods 

 
Table 3: Different experimental parameters considered in this 

approach 
 

Dataset ML Methods budget ε Dimensions 

IQVIA Inc. Naive Bayes [20, 30, 40, 50, 60] 1874 

BC-TCGA Random Forest [1, 3, 5, 10, 20] 17814 

 

IQVIA Inc.: 1713 samples, where 855 samples are 

diagnosed as wild-type amyloidogenic TTR cardiomyopathy 

(ATTR-CM) as well as positive cases of heart failure, and 

876 negative controls. 

 

BC-TCGA: 17814 genes with 424 positive labels and 50 

negative labels. 

The training data for the ML models were chosen at random 

in an 80:20 split, with 80% of the data being used in 

training. In a two-party setup where the data is split into 

two, the identical training data was used in both Naive 

Bayes and Random Forest [14]. The training procedure was 

repeated ten times, with the Area Under the Curve (AUC) 

values from each test set being averaged. We also 

experimented with different parameters, privacy budget ϵ 

varying data dimension to 200-350 for IQVIA and 20-50 for 

BC-TCGA. These are outlined in Table 3. 

 

4.2 Accuracy 

To measure the two ML models' significant accuracy, we 
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used the Area Under Curve (AUC) statistic. Since the curve 

(receiver operating characteristic) is generated by True 

Positive and False Positive rates, AUC appropriately 

characterizes the binary classifier. Moreover, it selects many 

thresholds between 0 and 1, with 1 being the most accurate; 

this means that the model accurately predicts the presence of 

all data points for all thresholds. The model is no more 

accurate than a coin flip for any binary classification when 

the area under the curve (AUC) is less than or equal to half 
[15]. Here, the suggested model is limited to correctly 

classifying positive data and fails miserably when faced 

with negative ones. Our relationship between privacy 

budget (ε) and Area Under Curve (AUC) for two separate 

approaches, Naive Bayes and Random Forest, is shown in 

Figure 2. Results demonstrate that using a privacy budget of 

30 or more yields better AUC values when applying the 

Random Forest algorithm on the competition's (IQVIA Inc.) 

dataset. The experiment is designed with the reduced 

dimension set at m′ = 250. Figure 2 shows a similar trend; 

with privacy budget 10, we were able to analyze BC-TCGA 

datasets with more accuracy. In this scenario, the reduced 

dimension is defined as m′ = 20. Lastly, when it comes to 

accuracy, we see a similar trend, where higher AUCs are 

produced by larger ε values [6].  

Similarly, when looking at AUC, Fig. 2 reveals that 

Random Forest consistently produces higher AUCs 

regardless of the value of m′. We found that the Random 

Forest method takes more time to run than Naive Bayes due 

to the increased number of calculations it required, in 

addition to the AUC discrepancy. The findings are 

negatively affected by both high and small values of m′, 

which shows how the data behaves with several dimensions. 

Lower values of m′ lead to significant data loss, while 

higher values of m′ take up a lot of ε and introduce too 

much noise into the data. Hence, for ε = 30, m′ ∈ {250, 300, 

350} works effectively. 

Using BC-TCGA data, we implemented our solution. It 

should be noted that the total score seems to be close to 98% 

for the BC-TCGA data, whereas the IQVIA data may only 

approach 80% with the DP option. Reason being, in the 

same configuration, BC-TCGA data achieves a maximum 

baseline score of 98%, but IQVIA data achieves a maximum 

baseline score of 84% when no privacy protection is 

included in the central architecture. In addition to more 

precise removal of features, IQVIA data consists entirely of 

binary values, which is called Haplotype Data [5]. So, in 

order to attain the same data usefulness as BC-TCGA, this 

data set with reduced dimensions influences the total score 

and requires a larger privacy budget. We hypothesise that 

the accuracy of the framework was compromised as a result 

of data loss in the haplotype gene data, which led to this 

situation. Because more relevant data were selected using 

feature selection to reduce dimension size, BC-TCGA data 

had no impact on the score.  

 

5. Conclusion 

In this study, we present three approaches for conducting a 

secure analysis of sensitive health- care data that is 

distributed among various participants. These frameworks 

are designed to perform ML classification in both 

horizontally and vertically partitioned data with an adequate 

level of utility while maintaining privacy. We proposed a 

distributed machine learning framework while guaranteeing 

privacy on vertically segregated data. In our method, each 

client uses LR and LSTM neural networks to make local 

predictions based solely on local features. Then, to offer an 

extra layer of privacy, a certain amount of noise is added to 

the prediction results using the DP algorithm. In addition, 

the weighted feature function, which is computed based on 

local feature sets, is applied to the final prediction. The 

central server then receives the perturbed scores along with 

a proper weight to calculate the final prediction. No raw 

data, features or model parameters are shared in any phase 

of the training. The results show that the federated version 

of the algorithm that uses encrypted gradients performs 

almost as well as its unencrypted counterpart, thus proving 

that partially homomorphic encryption is a viable tool that 

can be used to implement privacy in matrix decomposition 

based collaborative filtering methods without compromising 

much on accuracy as compared to its version that 

communicates gradients using plaintext to the server. 
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